RHFAUT

The example concerns a case of a couple subjected to a one load level and the verification have adopted particular choices for the load distribution factors for example. Is possible to deal with the case of a couple subject to multiple levels of load (up to 8 possible) for the required life time . Is possible to diversify various choices in particular the factors of misalignment and dynamic choices which are given information and clarification on the output video and print.

The test was performed according to ISO 6336 but you can also run it according to AGMA and in both cases in their original form and / or with variations of the author.

R H F - GEAR PITTING RESISTANCE AND STRENGTH: GENERAL DATA page			
Elaboration N° 29 TEST PRINT - IPAR/IDIS - NORMAL SOFTWARE			
GENERAL DATA - Helical External Gear Pair			
Operating Center Distance Net Face Width Normal Metric Module, Nominal Normal Standard Pressure Angle Standard Helix Angle	A' = 200 Bu = 90 Mn = 5 α n = 20 β = 13		
Transverse Operating Pressure Angle Pinion Operating Pitch Diameter Gear Operating Pitch Diameter	αť = 22.276587 D1' = 72.727 D2' = 327.273		
Operating Addendum Contact Ratios of Gear and Pinion Transverse and Face Contact ratios	$ \begin{aligned} \epsilon & 2 = 0.509 \ , \epsilon & 1 \\ \epsilon & \alpha = 1.406 \ , \epsilon & \ensuremath{\mbox{${\rm B}$}} \end{aligned} $	= 0.897 = 1.289	
PINION 1			
Tooth Number Coefficient of Addendum Modification Tooth Outside Diameter	Z = 14 X = 0.49499 Da = 86.7		
Tool Addendum Radius of the Tip Edge Rounding of the Tool: mean Tool profile: III DIN 3972 - Grinding or skiving. LEFT HELIX	Ha0 = 1.3355 · Mn ρa0 = 0.2 · Mn		
Material: Case hardened steel.			
GEAR 2 : EXTERNAL			
Tooth Number Coefficient of Addendum Modification Tooth Outside Diameter	Z = 63 X = 0.01299355 Da = 333.4		
Tool Addendum Radius of the Tip Edge Rounding of the Tool: mean Tool profile: III DIN 3972 - Grinding or skiving. RIGHT HELIX	Ha0 = 1.3355 · Mn ρa0 = 0.2 · Mn		
Material: Case hardened steel.			
Elasticity Data of the Gear Pair:			
Mean Young's Module Elastic Coefficient for Hertzian pressure ratings	Em = 206000 ZE = 190		

R H F - GEAR PITTING RESISTANCE AND STRENGTH: LOADING DATA		
Elaboration N° 29 TEST PRINT - IPAR/IDIS - NORMAL SOFTWARE		
RHF - LOADING CONDITION		
Pinion Torque	T1 = 2132 Nm	
Power at Pinion Pinion Rotation Speed	P1 = 70.33 kW n1 = 315 r.p.m.	
Required Life	L = 25000 hours	
Tangential Load	Ft' = 58631 N	
Load per millimeter of face width	Ft'/Bu = 651.5 N/mm	
	V – 1.2 m/3	
RHF - OVERLOAD FACTORS		
Mean Accuracy Grade of the two gears, ISO 1328: 5		
Base of dynamic condition according to ISO 6336:		
Factor $A = (v Z1/100) \cdot \sqrt{[U^2/(1+U^2)]}$	A = 0.16	
Power Sharing Factor	Ksh = 1	
Application Factor	Ka = 1 Km = 1.25	
(For RHI: KH β KH α = Km. For RFI: KF β KF α = Km with matrix	argin.) $RII = 1,25$	
RHF-I		
Overall Overload Factor	VI = 1.006 VI = 1.258	

R H - TOOTH SURFACE RESISTANCE TO HERTZ PRESSURE.	AND	LIFE

Elaboration N° 29

R H I ref. ISO 6336		Pinion	Gear
Corrective coefficient of profile relative curvature	Z	1	1
Pactor of transverse and face contact ratios Profile Geometry Factor	Ζε² GH	0. 0.259	0.259
Size Factor Assumed Hardness Factor	ZX ZW	1	1
Kinematic Viscosity, mm²/s	v 40 ZI	2:	20
Mean arithm. aver. roughness for the gear pair, µm Roughness Factor	Ra ZR	0.966	B 0 966
Velocity Factor	Zv	0.948	0.948
Overall Adaptation Factor $AH = (ZX ZW ZL ZR ZV)^2$		0.863	0.863
Surface conventional fatigue limit. Surface Yielding.			
Hertz pressure, conventional fatigue limit, N/mm ²	σ Hlim	1600	1600
Conventional Hertz pressure, N/mm ² Synthetic Surface Factor, N/mm ²	σH К	1386	1386
Conventional fatigue limit of K	Klim	12.594	12.594
Safety factor for fatigue limit = $\sqrt{(K lim/K)}$ Service Factor according to original Agma definition	SH fs	1.073	1.073
Surface Fatigue Limit Torque at Pinion, Nm	T1Hlim	2453	2453
Surface Yielding Torque at Pinion, Nm	T1Hy	7275	7275
Life Rating			
Cycle number at the beginning of the life curve		100000	100000
Cycle number per revolution	nL/n	1	1
Loading Factor at reduced safety limit	QS	0	0
Loading Factor	Qw QH	2.966 0.869	2.966 0.869
Exponent «A» of the curve NLf = NLV / QH^A Surface Damage	A Da	16 1	16 0.223
Life until failure, hours	Lf	24900	112000
For 25000 hours, with exponents 16 and 16 resp.: Stress cycle factor	7N	0 932	0 977
Safety factor for the required Life	SH	1	1.05
Service factor according to present Agma definition	fs	1	1.1

RF - GEAR TOOTH ROOT STRENGTH AND LIFE

page 4

Elaboration N° 29

R F I ref. ISO 6336		Pinion	Gear
Tools: Type or Tooth Number Tools: tip edge rounding radius / Mn Helix Angle Factor	Z0 ρa0/Mn Υß	Hob 0.2 0.3	Hob 0.2 8917
Angle defining the dangerous fillet point Form Factor Stress Correction Factor Corrective coefficient of YS for fillet steps Notch Sensitivity Factor Tooth Root Roughness Factor	δF YF YS YSg/YS YδrelT YRrelT	30 1.362 2.451 1.111 1 1	30 1.561 2.208 1.111 1 1
Conventional fatigue limit. Yielding Torque.			
RF resisting face width, mm Test Nominal Limit Stress, N/mm ² Nominal Limit Stress for specific application, N/mm ² Load: unidirectional	BF σFlimT σFlim	100 500 500	90 500 500
Size Factor	YX	1	1
Nominal Root Bending Stress, N/mm ² Unit Load UL = Ft' / (Mn BF) , N/mm ² Conventional fatigue limit of UL Safety factor for fatigue limit, SF = ULlim / UL Service Factor according to original Agma definition	σ ^b UL ULlim SF fs	181 117.3 237.5 2.025 2.025	231 130.3 229.9 1.765 1.765
Fatigue Limit Torque at Pinion, Nm Yielding Torque at Pinion, Nm	T1Flim T1Fy	4318 14400	3762 11400
Life Rating			
Cycle number at the beginning of the life curve Cycle number at vertex of conventional fatigue limit Cycle number per revolution Loading Factor at reduced safety limit	NLW NLV nL / n QS	1000 3000000 1 0	1000 3000000 1 0
Max. allowable Loading Factor	Qw	3.329	3.032
Loading Factor Exponent of the curve NLf = NLV / QF^A Tooth Root Damage Life until failure, hours	QF A Dg Lf	0.494 50 0 unlimited	0.567 50 0 unlimited
For 25000 hours, with exponents 50 and 50 resp.: Life factor Safety factor for the required Life Service factor according to present Agma definition	YN SF fs	0.904 1.83 1.83	0.931 1.64 1.64